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Problem Formulation

The analysis of dynamic fracture models, that is models based upon

the equations of motion of continuum mechanics rather than the equations

of equilibrium, has received considerable attention recently in the

applied mechanics literature. Principally for the sake of mathematical

convenience, most of these studies have been in the context of linear

elasticity. Consequently, for elastic material, many canonical boundary

value problems have been solved, either in closed form or numerically,

for both steady-state and transient modes of crack propagation. For

viscoelastic material, however, much less progress has been made in

constructing convenient analytical solutions to even the simplest

dynamic crack problems.

In [2], an analysis was presented of the dynamic, steady-state

propagation of a semi-infinite, anti-plane shear crack in a general,

infinite, homogeneous and isotropic linearly viscoelastic body. (See

[21 for a discussion of other relevant studies of dynamic viscoelastic

crack propagation.) With only very weak assumptions on the shear

modulus (specifically, that it be a continuously differentiable, convex

and non-increasing function of time), simple closed form expressions

were constructed for the stress intensity factor and the entire stress

field in front of and in the plane of the advancing crack. Moreover, it

was shown that if v, c and c* denote the crack speed and elastic shear

wave speeds corresponding to the zero and infinite time values of the

shear modulus, respectively, then for 0 < v < c* the stress field is the

same as for elastic material (that is, it is independent of crack speed

and material properties), whereas for c* < v < c the stress field

depends upon both v and material properties. An important result from

this study was that the dependence upon v and material properties has a

., .', ,.. : . .: -. . . . -, . ... , ,'. .. *-. . .- : .. -..
,A . %.%-.-
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simple universal form from which qualitative and quantitative

information can be easily obtained.

In this paper, the corresponding problem for a viscoelastic layer

of finite thickness is considered. The finite layer problem is of

interest because the model has more relevance to engineering

applications and significantly more mathematical complexity than does

the infinite layer problem. Of additional importance is the fact that

the Riemann-Hilbert method employed in [2] goes through for this more

complicated problem. Specifically, the principal obstacle encountered

in applying the Riemann-Hilbert method is the evaluation of a certain

rather complx appearing combination of functions and integral

transforms. It is demonstrated here that a simplification similar to

that effected in (21 occurs also for the finite layer problem and that

the stress intensity factor has a simple universal dependence on v,

material properties and layer thickness, even for general shear modulus.

It should also be remarked that the approach adopted here has

proved to be convenient for the calculation of the angular dependence of

the near crack tip stress field for both the finite and infinite layer

problems. These calculations are the subject of a forthcoming paper as

is analysis of the substantially more complicated opening mode plane

strain problem. This section concludes with the formulation of the

appropriate boundary value problem and the derivation of the

corresponding Riemann-Hilbert problem.

The governing field equations for the motion of the linearly

viscoelastic layer are

aij,j = Ui,t - < xI < , -h < x2 _ h ,

"Yw fW *% '%
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cij = (Ui,j + uj,i)/2

aij = 21.*dEij + 6 ij*dckk

where aij, Eij and ui denote the stress, strain and displacement fields,

respectively. The summation convention is in effect, f,i denotes

partial differentiation of the function f and P*dc denotes the Riemann-

Stieltjes convolution

= tP*dc = P(t-r)dc(T).

Since the body is assumed to be in a state of anti-plane strain

deformation, the only equation of motion not identically satisfied is

u*dAu3 = P u3,tt

where u3 denotes the 2-dimensional Laplacian, A = D2 /ax2 + 92 /;x2. A

semi-infinite crack is assumed to be propagating to the right with

constant speed v along the xl-axis. The crack is subjected to a

traveling distribution of applied tractions, 0 2 3 (x1 ,O,t) = f(xl-vt) for

x I vt, while on the upper and lower surfaces of the layer two possible

boundary conditions are considered, fixed grip and traction free, i.e.

I. u3 (xl,±h,t) = 0 , - ,< < -

II. o23 (xl,±h,t) 0 , -" < x, <

Therefore, adoption of the Galilean variables x = x, - vt, y = x2 yields

the boundary value problem

ii *d u3 = P v2u3,xx lyl < h, lxi < 1.1

G23x -O = ay (P*du 3 ) -f(x) , x < 0o23 (xO) 0 Fi *d.

U3 (x,O) = 0 , x > 0 1.2

* - .bmW *
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I. u3 (x,+h) 0 , jxI <

or
II. o23 (x,+h) = 0 , <xi < • 1.3

The next series of steps are similar to those in [21 and only will be

suTmmarized here.

Use will be made of the Fourier transform defined by

f(p,y) = f eiPXf(xy)dx = F+(p,y) + F_(p,y)

here

F+ =f eiPxf(x,y)dx

0

F= f eiPXf(x,y)dx

Transforming 1.1, solving the resulting ordinary differential equation

and applying the boundary conditions 1.3 yields

=sinh(Y(p)(h-y)) I.
u3 (P'Y) = A1(P) [cosh(Y(p) (h-y)) II.

with Y2 = p 2 + ipv /p(-vp). As will be discussed later, it is

convenient to choose a square root of y2 with positive real part.

Applying the boundary conditions 1.2 produces the relation on y = 0

A+ th (hy(p)) , .23+  ' v(-P)l(P)3,1 ta (hY(p)) , IIo

where a + denote the restrictions of 023 to the positive and

negative x-axis, repsectively.

Equation 1.4 may be viewed as the Riemann-Hilbert problem

V • *. - . i ,.% - ".
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F+ (p) = G(p) F-(p) + g(p) 1.5

where

F+(p) a+

g(p) = -0-23 -

G(p) = v(-vp)y(p) oth (hyp))

Ltanh (hy(p)) , II.

It is easily demonstrated a posteriori that 23 (x,O) and u ,l(x,O) are

such that F+ 23 and F-(z) = U3,1 define functions analytic for

Im(z) Z 0, respectively, and are such that the limits

F±-(p) = lir F-(p+iq)

exist and satisfy 1.5. In the next section the Riemann-Hilbert problem

1.5 is solved and the stress intensity factor calculated.

2. Problem Solution

In order to solve 1.5 it is necessary to determine the mapping

properties of the coefficient G(p). (See [11, for example, for a

detailed discussion of the theory of Riemann-Hilbert boundary problems.)

As in (21, it is convenient to rewrite G(p) as

G(p) = sgn(p)G1 (p)G2 (p)

where

G1 (p) = -ill(-vp)Y-1 (p) 2.1

coth (hIplvl(p)) , 1.G2 (P) pYP) 2.2
(hjpjYl (p)) , II.

,,, . , . . ,. .... ..., ... .% ...
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Y1 (p) = Ll-Pv2/ (-pv)]1/2  2.3

* 1(-vp) = ipvi'(-vp) = ,(O) + Je-iVPtdi(t) • 2.4

0

For what follows it is sufficient (but clearly not necessary) to

assume, as in [2], that the shear modulus, P(t), is positive,

continuously differentiable, non-increasing, convex and such that P(-) =

lim p(t) > 0. These assumptions are still sufficiently general to

include all physically reasonable examples. Moreover, an easy

adaptation of the analysis presented here permits use of the pure power-

law model, (t) = Ic(t/tc)- , which provides an effective

characterization of many real materials.

For convenience the following observations from [2] are recorded

here:

(i) j(o) = p(c) c_ Re(j(-vp)) S_ v(o) = (-)

(ii) Im(j(-vp)) = -Im(W(vp))

(iii) arg(ji(-vp))
f_1O, p<O

(iv) Im(-y(-p)) = Im(y2(p))

Re(y (-p)) = Re(y2 (p))

(v) 2(V) ImllPl) > 0, 0 < p <

(vi) 1 - (v/c*) 2 _ (0) < Re(Y2 (p)) 2 = 1 - 2

where c* - (P()/P)I / 2 and c = (P(O)/P)1/2 are the elastic shear wave

speeds corresponding to the value of (t) for infinite and zero time.

,,., . , ,,. ..,..,......... . , .. .. ........

~~~~. . . . . ... . .. . ,.......,..,............. .....
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In order to take the square root of -y2()i sncsayt

distinguish two cases

Takig te brnchcut for 'yj(p) to be the negative real axis assures

that 'Yl(p) has positive real part. Hence for case 1., Yl(p) is H6lder

.4 continuous for all real p and

(vii) Im(y 1 (p)) =-Im(y 1 (-p))

Re(Y 1 (p)) =Re(Y 1 (-p))

(viii) Im('Y1 (p)) > 0 , 0 < p <

- ~(i x) (I - (v/c*)2)/ =(- R1 O . =( (v/c)2)/

whereas for case 2. (vii) and (viii) still hold but Yr1(p) is

discontinuous for p =0. In particular,

(x Y1(w=( (v/c) 2) 1/2

Y= (i((v/c*) 2 _ 1)1/

The image in the complex plane of the real p-axis under the

transformation Yl(p) is illustrated in Fig. 1 of [21 for both cases 1.

and 2.

Following the solution method employed in 12], we f irst consider

the problem of finding functions X (z) analytic for Im(z) 1< 0,

respectively, and which satisfy the homogeneous boundary relation

X(p) - G (p) X (p) .2.5

Auxilliary functions X.(z), i1 1,2 are defined by

N 2.

Now~'%**%P,.'*
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X:L(p) ipX()

Then clearly,
-4- z + __-

X(z) W w~Z )X(z) 2.6

where w +(z) denote branches of z I / 2 whose branch cuts are the negative

and positive imaginary axes, respectively. (See [2].)4

The functions Xl(z) were constructed in [2], but here only the

boundary limit X4(p) is needed. It was shown in [2] that

w + (-ip)l/21Gl(),1/2 , case 1.
)(qo- ip)1/2IG1 (.)I1/2 case 2.

where qo is the unique positive solution to

vqO  *(t)e-%vtdt = (v/c) 2  2.7

0

- In 2.7 p*(t) denotes a normalized modulus given by

.:-. .,,

11 *(t)= P(t)/P(O) .

The central focus of this paper is the construction of the

-.asymptotic form of 3 (xO) for x near zero. To that end, much of the;4

derivation presented in [21 is valid here also. In particular, it can

be concluded that

F+t(z)= g (T)/X+(T) d.

3 = f e-iXpX(p)dp+" g(T)/X+(t) t

and for x near zero, the dominant term in the asymptotic expansion of

G+3 (x) is given by

, %

Ze' -:
,, +. ,. . :' ':::+! + +.,,++...: .,...-,.._._.,*. . ... . ... .. ..... .:.. ,.*. . . ..
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'23 (' 21r +( /X+=d- K x- 1 / 2 . 2.8

The coefficient K is the stress intensity factor. It should be remarked

that 2.8 is valid for the finite layer problem because G = .

In [2] a simple closed form expression for K was constructed

through the device of introducing the function h(x) for which

4OD

.1.. /X (T) -i'TXh(x)dx 2.9

and fromn which it follows that

K-7 =--a2 3 (x)h(x)dx 2.10

The principal result of [2] was the proof that

Fl,.", case 1.

h(x) = IGl(_)1-i/ 2 H(-x)Ixl-i/ 2  2. 2.11
" exqo , case 2.

.,

where H(x) is the Heaviside step function,

1i, x>O0

H(x) =
fi 0, x < 0

For a layer of finite thickness, lines 2.8-2.10 are still valid,

but with X+ (T) given by 2.6. Consequently, the simple form 2.11 for

h(x) does not hold; the contribution from X2 (x) must be incorporated

into the solution. It is convenient to remark here that since G2 (P) for

problems I and II are just reciprocals, the same is true for X(z).

* 'Therefore, it is necessary to consider only one of the cases, say I.
*+

Evaluating X.(p) is the central problem. Clearly, from the general

theory of Riemann-Hilbert boundary value problems ([1]), it follows that

V i,:;.-.; ,'. ,-.;..?-.--l.v; -.";.k--'-';'-.'---'. .' -. ;--. - ' -- ":¢:": >--.:-- ---.-- :'':-'<.

,l! /.l -...,'.-..i,.,".-....,....'"- " .°"""" - .9 ""',, . , •,.'"' "" "- ." .i"
" "

" """""'.% " -
"€ ' "

" """" .-- ' """ -. ' """



W2 z e r'2 (z)

with

r (z) logl (G.1
2 27ri j g (2(T)) T-Z 2 1

The integral in 2.12 can be evaluated by a technique similar to that

employed in the analysis in [21 of the case c* < v < c. Moreover, only

the boundary limit X12(p) is needed in the computation of the stress

field. As in [2], it is necessary to consider the two cases 1. and 2.I

Casel1. 0 < V<c*

The function log (G2 (T)), T > 0 has a natural extension, log

(G2())'to a function analytic in the fourth quadrant, i.e. for

z = -iq with -r,q > 0. Computing the boundary limit lim log
t 0+

"a (G2 (t-iq)) yields

Tim log (2 r-iq)) = log (coth (-iqhY1 (-iq)))

= log (i cot(hqY1 (-iq))) .2.13

Since qY1 (-iq) is an increasing function of q, there exists a sequence

of numbers, fann-0, such that

ha2nyl(-ia 2n) = nnr n = 0,1,....

"a 2.14
ha2 n+lYl (-ia 2 n+l) = (n+1/2)r , n =0,1...

In light of 2.3, 2.14 can be rewritten

va2  P(t) exp[-vta2nIdt =(v/c) 21(.- (nrr/ha2n)22.1

va~nlf'o*(t~xp[-ta~nlld (v/c) 2 /(l- (n+l/2)7r/ha2 n+l) 2

AA
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Consequently,

arg (i cot (hqYl (-iq))) = "/2 for a2n < q < a2n+l

while

arg (i cot (hqYl (-iq))) = -7/2 for a2n+l < q < a2(n+l)

If T < 0 , the function log (G2 (t)) has the natural analytic

extension log (G2 (z)), z = t-iq, q > 0 given by log (G2 (z)) = log

(coth(-hzYl(z))). Letting z approach the negative imaginary axis

results in

lim log (G2 (T-iq)) = log (coth (ihqYl(-iq)))x0-

= log (-i cot (hqYl (-iq))) . 2.16

The function r (z) may be computed by replacing the integral in

2.12 over the real axis with the appropriate integrals along the lines

r t-ia 2n+l, < T < - and -iq, 0 < q < a2n+l . Specifically, for

Im (z) > 0,

r +2(z) 1 log (G2 ( T ) ) -z

1 [f 1 0 +) -ia2ni+l [(+-i° f+D0d

+ + log (G2 (T)O 2.17
* 2 ia2n+l (o+) -ia2n+l ]

1 [f: +(0-) -ia2n+l + ia2n+l ogG T 2.18
2 i CO (0-) -io J(0-) -ia2n+l 2z

1 [( 0 )-ia2n~l + log(G 2 ()) 2.19

(0+)-io - ia2n+ 2

.s ..... '.',,. .... . -,*-''',' - ,: ... ,. ., ... "v - . . . . . . . . X 4 .-. -

I~~~~~ o ,U + - a~ ~ 'o U, • • - ° o ' + 
+

. o + ' " . " . " -
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+ i 1 " lg (G2() ) T 2.20

Lines 2.17 and 2.18 vanish by Cauchy's theorem. The integral in line

2.20 tends to zero as n - 0 uniformly in z for Im(z) > 0 and therefore

will be denoted by c(n).

From the above observations and after an obvious change of

variables in 2.19 it is now clear that

=l(n)+ flog (icot (th 1 (-it)))-log(-icot(th_1(-it)))]U

= C(n) +2 a arg (icot(thyl(-it))) dt

j=1 a2j-l tiz

() i . _ 1 aa 2j+ dtlog iz 2 JJa t-iz

=(n) +llgal-z 2. I:i -i :t f-i

=1 2j-1 2j

(n)+ 2l( Z)- [log (a2j-iz) -log (a2j-l-iz) -log (a2j+l-iz)].
j=1

2.21

In 2.21, the limit Im(z) 0 0+ is easily taken from which it then follows

that

= (ip - 1 / 2 Yn(p)ec (n ) 2.22

" "%r"q.',,.....'. o . " ,.% *."• o o ,%
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with

n 21- 1 - Pp 1/2in (P) =I [ ](a2n+l ip) 2.23
j=l '2j - ip

Case 2. c* < v < c

In contrast to case 1., for case 2. YI(T) has a natural extension,

Sl(Z), that is analytic for Im(z) < 0 except for a branch cut, -iq,

0 < q < qo with qo given by 2.7. The same is then true for log (G2 ([))

and in particular, log (G2 (z)) is analytic for Im(z) < -qo. After this

minor modification is taken into account, the argument utilized in case

1. applies also for case 2. and yields the result

K2(p) = (qo-ip)-i/ 2 Yn (p)e(n) 2.24
where Yn(p) is still given by 2.23 and the anby 2.14. It should be

observed that for case 2, the an are such that qo < a1 < ... whereas for

case 1, 0 < a1 < ... . Moreover, the an for case 2 are larger than the

! I corresponding an for case 1.

Correspon ing a+o ae1
Calculating 2~3 (x,O) requires the function 1+(p). From 2.6, 2.8-

2.10, 2.22-2.24 it is easily seen that for both case 1 and case 2

+(p) = n aI)/ ip) 1/2 2.25X+ (p jl=il a1(2j - "(a2n+l'

S= lim + (p)
°n n

and that

K = lim K Kn _IG()11/2 f 23(x,)hn(x)dx
n**

with

nY4.- 
' 3 (x'Olhncx-d
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hn) = if eixp/Z+(p)dp. 2.26
-00

A convenient scheme for inductively approximating the stress intensity

factor K can be based upon the observation that

a n-i b b[ (a2j )= 1 + nl bnn 2.27

j=l a 2 j. 1 -ip (al-i) (a 2 nl-iP)'

where
n n

bnk - [ I (a 2 j - a 2 k- )]/[ fT (a2j-1 - a2k-1)]
j=l j

=b(n l)k(aa2n-a2k-ia2n-1 -a 2k-i

In light of 2.25-2.27 and after some routine integrations it can be

shown that for x < 0,

hn(x) = Ixl-/ 2kn(x)

kn(x) = ea2n-lx - 2x 1 bnjf exp[x(a2nl t
2 + a2 j-(1-t 2 ))]dt

j=i
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